The colored Jones function is q–holonomic
نویسندگان
چکیده
A function of several variables is called holonomic if, roughly speaking, it is determined from finitely many of its values via finitely many linear recursion relations with polynomial coefficients. Zeilberger was the first to notice that the abstract notion of holonomicity can be applied to verify, in a systematic and computerized way, combinatorial identities among special functions. Using a general state sum definition of the colored Jones function of a link in 3–space, we prove from first principles that the colored Jones function is a multisum of a q–proper-hypergeometric function, and thus it is q–holonomic. We demonstrate our results by computer calculations. AMS Classification numbers Primary: 57N10 Secondary: 57M25
منابع مشابه
Difference and Differential Equations for the Colored Jones Function
The colored Jones function of a knot is a sequence of Laurent polynomials. It was shown by TTQ. Le and the author that such sequences are q-holonomic, that is, they satisfy linear q-difference equations with coefficients Laurent polynomials in q and qn. We show from first principles that q-holonomic sequences give rise to modules over a q-Weyl ring. Frohman-Gelca-LoFaro have identified the latt...
متن کاملTHE sl3 JONES POLYNOMIAL OF THE TREFOIL: A CASE STUDY OF q-HOLONOMIC SEQUENCES
The sl3 colored Jones polynomial of the trefoil knot is a q-holonomic sequence of two variables with natural origin, namely quantum topology. The paper presents an explicit set of generators for the annihilator ideal of this q-holonomic sequence as a case study. On the one hand, our results are new and useful to quantum topology: this is the first example of a rank 2 Lie algebra computation con...
متن کاملA Stability Conjecture for the Colored Jones Polynomial
We formulate a stability conjecture for the coefficients of the colored Jones polynomial of a knot when the color lies in a fixed ray of a simple Lie algebra. Our conjecture is motivated by a structure theorem for the degree and the coefficients of a q-holonomic sequences given in [Gar11] and by a stability theorem of the colored Jones polynomial of an alternating knot given in [GL15]. We prove...
متن کاملOn the characteristic and deformation varieties of a knot
The colored Jones function of a knot is a sequence of Laurent polynomials in one variable, whose nth term is the Jones polynomial of the knot colored with the n–dimensional irreducible representation of sl2 . It was recently shown by TTQ Le and the author that the colored Jones function of a knot is q–holonomic, ie, that it satisfies a nontrivial linear recursion relation with appropriate coeff...
متن کاملThe Noncommutative A-Polynomial of (-2, 3, n) Pretzel Knots
We study q-holonomic sequences that arise as the colored Jones polynomial of knots in 3-space. The minimal-order recurrence for such a sequence is called the (non-commutative) A-polynomial of a knot. Using the method of guessing, we obtain this polynomial explicitly for the Kp = (−2, 3, 3+2p) pretzel knots for p = −5, . . . , 5. This is a particularly interesting family since the pairs (Kp,−K−p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003